4.6 Article

High-Frequency Deep Brain Stimulation of the Putamen Improves Bradykinesia in Parkinson's Disease

期刊

MOVEMENT DISORDERS
卷 26, 期 12, 页码 2232-2238

出版社

WILEY-BLACKWELL
DOI: 10.1002/mds.23842

关键词

putamen; deep brain stimulation; bradykinesia; physiology; pathophysiology

资金

  1. University of Alabama at Birmingham
  2. National Institutes of Health [K23 NS067053-01]
  3. Lanier Family Foundation
  4. Charles Ackerman Parkinson Research Fund

向作者/读者索取更多资源

Deep brain stimulation is effective for a wide range of neurological disorders; however, its mechanisms of action remain unclear. With respect to Parkinson's disease, the existence of multiple effective targets suggests that putamen stimulation also may be effective and raises questions as to the mechanisms of action. Are there as many mechanisms of action as there are effective targets or some single or small set of mechanisms common to all effective targets? During the course of routine surgery of the globus pallidus interna in patients with Parkinson's disease, the deep brain stimulation lead was placed in the putamen en route to the globus pallidus interna. Recordings of hand opening and closing during high-frequency and no stimulation were made. Speed of the movements, based on the amplitude and frequency of the repetitive hand movements as well as the decay in amplitude, were studied. Hand speed in 6 subjects was statistically significantly faster during active deep brain stimulation than the no-stimulation condition. There were no statistically significant differences in decay in the amplitude of hand movements. High-frequency deep brain stimulation of the putamen improves bradykinesia in a hand-opening and -closing task in patients with Parkinson's disease. Consequently, high-frequency deep brain stimulation of virtually every structure in the basal ganglia-thalamic-cortical system improves bradykinesia. These observations, together with microelectrode recordings reported in the literature, argue that deep brain stimulation effects may be system specific and not structure specific. (C) 2011 Movement Disorder Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据