4.0 Article

The Effect of Movement Rate and Complexity on Functional Magnetic Resonance Signal Change During Pedaling

期刊

MOTOR CONTROL
卷 16, 期 2, 页码 158-175

出版社

HUMAN KINETICS PUBL INC
DOI: 10.1123/mcj.16.2.158

关键词

locomotion; fMRI; supraspinal; cycling

向作者/读者索取更多资源

We used functional magnetic resonance imaging (fMRI) to record human brain activity during slow (30 RPM), fast (60 RPM), passive (30 RPM), and variable rate pedaling. Ten healthy adults participated. After identifying regions of interest, the intensity and volume of brain activation in each region was calculated and compared across conditions (p < .05). Results showed that the primary sensory and motor cortices (S1, M1), supplementary motor area (SMA), and cerebellum (Cb) were active during pedaling. The intensity of activity in these areas increased with increasing pedaling rate and complexity. The Cb was the only brain region that showed significantly lower activity during passive as compared with active pedaling. We conclude that M1, S1, SMA, and Cb have a role in modifying continuous, bilateral, multijoint lower extremity movements. Much of this brain activity may be driven by sensory signals from the moving limbs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据