4.4 Article

Empirical Localization of Observation Impact in Ensemble Kalman Filters

期刊

MONTHLY WEATHER REVIEW
卷 141, 期 11, 页码 4140-4153

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR-D-12-00330.1

关键词

Data assimilation; Ensembles

资金

  1. National Science Foundation

向作者/读者索取更多资源

Localization is a method for reducing the impact of sampling errors in ensemble Kalman filters. Here, the regression coefficient, or gain, relating ensemble increments for observed quantity y to increments for state variable x is multiplied by a real number defined as a localization. Localization of the impact of observations on model state variables is required for good performance when applying ensemble data assimilation to large atmospheric and oceanic problems. Localization also improves performance in idealized low-order ensemble assimilation applications. An algorithm that computes localization from the output of an ensemble observing system simulation experiment (OSSE) is described. The algorithm produces localizations for sets of pairs of observations and state variables: for instance, all state variables that are between 300- and 400-km horizontal distance from an observation. The algorithm is applied in a low-order model to produce localizations from the output of an OSSE and the computed localizations are then used in a new OSSE. Results are compared to assimilations using tuned localizations that are approximately Gaussian functions of the distance between an observation and a state variable. In most cases, the empirically computed localizations produce the lowest root-mean-square errors in subsequent OSSEs. Localizations derived from OSSE output can provide guidance for localization in real assimilation experiments. Applying the algorithm in large geophysical applications may help to tune localization for improved ensemble filter performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据