4.4 Article

A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering

期刊

MONTHLY WEATHER REVIEW
卷 140, 期 9, 页码 3090-3105

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR-D-11-00215.1

关键词

-

资金

  1. National Science Foundation

向作者/读者索取更多资源

The formulation of a fully compressible nonhydrostatic atmospheric model called the Model for Prediction Across Scales-Atmosphere (MPAS-A) is described. The solver is discretized using centroidal Voronoi meshes and a C-grid staggering of the prognostic variables, and it incorporates a split-explicit time-integration technique used in many existing nonhydrostatic meso-and cloud-scale models. MPAS can be applied to the globe, over limited areas of the globe, and on Cartesian planes. The Voronoi meshes are unstructured grids that permit variable horizontal resolution. These meshes allow for applications beyond uniform-resolution NWP and climate prediction, in particular allowing embedded high-resolution regions to be used for regional NWP and regional climate applications. The rationales for aspects of this formulation are discussed, and results from tests for nonhydrostatic flows on Cartesian planes and for large-scale flow on the sphere are presented. The results indicate that the solver is as accurate as existing nonhydrostatic solvers for nonhydrostatic-scale flows, and has accuracy comparable to existing global models using icosahedral (hexagonal) meshes for large-scale flows in idealized tests. Preliminary full-physics forecast results indicate that the solver formulation is robust and that the variable-resolution-mesh solutions are well resolved and exhibit no obvious problems in the mesh-transition zones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据