4.4 Article

Do the Tallest Convective Cells over the Tropical Ocean Have Slow Updrafts?

期刊

MONTHLY WEATHER REVIEW
卷 138, 期 5, 页码 1651-1672

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2009MWR3030.1

关键词

-

向作者/读者索取更多资源

Far from continents, a few storms lift precipitation-size ice particles into the stratosphere, 17 to 18 km above the tropical ocean. This study is the first to examine the observed properties of a large sample of these extremely tall convective storm cells. The central questions in this study are whether the unusually tall ocean cells have the slow updrafts known to be typical of oceanic convection, and if so, how can these tall cells reach such extreme heights. The precipitation radar on the Tropical Rainfall Measuring Mission (TRMM) satellite observed 174 extremely tall oceanic cells from 1998 to 2007. Relative updraft intensity is inferred from 17-km-tall oceanic cells having, on average, a 7-km lower 40-dBZ radar reflectivity height and an order of magnitude less lightning than do equally tall cells over the Sahel region of Africa, a region known for vigorous convective updrafts. Despite some ambiguity, the potential temperature and lapse rate of the NCEP reanalysis suggest that the environment in which these oceanic cells form is conducive to modest updrafts reaching extreme heights. Extrapolating based on the limited coverage of the TRMM satellite radar, it is likely that such extremely tall cells occur more often than once each day somewhere over the tropical ocean.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据