4.4 Article

Low-Level Thermodynamic, Kinematic, and Reflectivity Fields of Hurricane Guillermo (1997) during Rapid Intensification

期刊

MONTHLY WEATHER REVIEW
卷 137, 期 2, 页码 645-663

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008MWR2531.1

关键词

-

资金

  1. National Science Foundation [ATM02-39648, ATM-0735867]
  2. NOAA/AOC
  3. NOAA/AOML/HRD
  4. Directorate For Geosciences
  5. Div Atmospheric & Geospace Sciences [0735867] Funding Source: National Science Foundation

向作者/读者索取更多资源

From 0600 UTC 2 August to 1200 UTC 3 August Hurricane Guillermo (1997) deepened by 54 hPa over the eastern North Pacific Ocean, easily exceeding the thresholds that define rapid intensification (RI). The NOAA WP-3Ds observed a portion of this RI with similar two-aircraft missions on consecutive days. The aircraft jettisoned 70 successful global positioning system (GPS) dropwindsondes (or GPS sondes), which reveal how conditions in the lower troposphere on the octant to quadrant scale evolved within 250 km of the eye. Reflectivity fields demonstrate that the deepening is correlated with a spiraling in of the northern eyewall that reduces the eye diameter by 10 km. This behavior contrasts the more uniform contraction witnessed during eyewall replacement cycles. Mixing between the lower eye and eyewall, as detailed by other investigators, appears to have triggered the reduction in the eye diameter. After RI the eyewall remains asymmetrical with the tallest echo tops and heaviest rain rates located on the east or trailing side of the hurricane and to the left of the deep-layer shear vector. Net latent heat release within 60 km of the circulation center increases 21% from 2 to 3 August and is matched by a 30% increase in the inflow below 2 km at the 100-km radius. The GPS sondes, combined with aircraft in situ data for the eyewall region, reveal that the tropical cyclone (TC) establishes an annulus adjacent to and under the eyewall where the tangential wind component and equivalent potential temperature increase substantially. The radial extent of this annulus is constrained by the rainbands that remain robust throughout RI. The results support the argument that RI is controlled by processes within 100 km of the circulation center, and in particular within the eyewall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据