4.7 Article

Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stu2037

关键词

stars: formation; galaxies: dwarf; galaxies: evolution; galaxies: formation; cosmology: theory; dark matter

资金

  1. NSF [NSF-AST-1010033]
  2. MINECO (Spain) [AYA2012-31101]
  3. MICINN (Spain) [AYA-2009-13875-C03-02]
  4. National Science Foundation [DGE-1144468]
  5. Office of Science of the US Department of Energy [DE-AC02-05CH11231]
  6. [STSci/HST-AR-12647.01]
  7. [NSF-AST-1009908]

向作者/读者索取更多资源

Despite recent success in forming realistic present-day galaxies, simulations still form the bulk of their stars earlier than observations indicate. We investigate the process of stellar mass assembly in low-mass field galaxies, a dwarf and a typical spiral, focusing on the effects of radiation from young stellar clusters on the star formation (SF) histories. We implement a novel model of SF with a deterministic low efficiency per free-fall time, as observed in molecular clouds. Stellar feedback is based on observations of star-forming regions, and includes radiation pressure from massive stars, photoheating in H II regions, supernovae and stellar winds. We find that stellar radiation has a strong effect on the formation of low-mass galaxies, especially at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component. This behaviour is evident in a variety of observations but had so far eluded analytical and numerical models without radiation feedback. Compared to supernovae alone, radiation feedback reduces the SF rate by a factor of similar to 100 at z less than or similar to 2, yielding rising SF histories which reproduce recent observations of Local Group dwarfs. Stellar radiation also produces bulgeless spiral galaxies and may be responsible for excess thickening of the stellar disc. The galaxies also feature rotation curves and baryon fractions in excellent agreement with current data. Lastly, the dwarf galaxy shows a very slow reduction of the central dark matter density caused by radiation feedback over the last similar to 7 Gyr of cosmic evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据