4.7 Article

Primordial mass segregation in simulations of star formation?

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stu2393

关键词

methods: numerical; stars: formation; stars: kinematics and dynamics; open clusters and associations: general

资金

  1. Royal Astronomical Society
  2. DFG cluster of excellence 'Origin and Structure of the Universe'

向作者/读者索取更多资源

We take the end result of smoothed particle hydrodynamics (SPH) simulations of star formation which include feedback from photoionization and stellar winds and evolve them for a further 10 Myr using N-body simulations. We compare the evolution of each simulation to a control run without feedback, and to a run with photoionization feedback only. In common with previous work, we find that the presence of feedback prevents the runaway growth of massive stars, and the resulting star-forming regions are less dense, and preserve their initial substructure for longer. The addition of stellar winds to the feedback produces only marginal differences compared to the simulations with just photoionization feedback. We search for mass segregation at different stages in the simulations; before feedback is switched on in the SPH runs, at the end of the SPH runs (before N-body integration) and during the N-body evolution. Whether a simulation is primordially mass segregated (i.e. before dynamical evolution) depends extensively on how mass segregation is defined, and different methods for measuring mass segregation give apparently contradictory results. Primordial mass segregation is also less common in the simulations when star formation occurs under the influence of feedback. Further dynamical mass segregation can also take place during the subsequent (gas-free) dynamical evolution. Taken together, our results suggest that extreme caution should be exercised when interpreting the spatial distribution of massive stars relative to low-mass stars in simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据