4.7 Article

Suppression of extreme orbital evolution in triple systems with short-range forces

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stu2396

关键词

binaries: close; planetary systems

资金

  1. NSF [AST-1211061]
  2. NASA [NNX12AF85G, NNX14AG94G, NNX14AP31G]
  3. China Scholarship Council
  4. NASA [NNX12AF85G, 75184] Funding Source: Federal RePORTER

向作者/读者索取更多资源

The Lidov-Kozai (LK) mechanism plays an important role in the secular evolution of many hierarchical triple systems. The standard LK mechanism consists of large-amplitude oscillations in eccentricity and inclination of a binary subject to the quadrupole potential from an outer perturber. Recent work has shown that when the octupole terms are included in the potential, the inner binary can reach more extreme eccentricities as well as undergo orientation flips. It is known that pericentre precessions due to short-range effects, such as General Relativity and tidal and rotational distortions, can limit the growth of eccentricity and even suppress standard (quadrupolar) LK oscillations, but their effect on the octupole-level LK mechanism has not been fully explored. In this paper, we systematically study how these short-range forces affect the extreme orbital behaviour found in octupole LK cycles. In general, the influence of the octupole potential is confined to a range of initial mutual inclinations i(tot) centred around 90 degrees. (when the inner binary mass ratio is << 1), with this range expanding with increasing octupole strength. We find that, while the short-range forces do not change the width and location of this 'window of influence', they impose a strict upper limit on the maximum achievable eccentricity. This limiting eccentricity can be calculated analytically, and its value holds even for strong octupole potential and for the general case of three comparable masses. Short-range forces also affect orbital flips, progressively reducing the range of itot within which flips are possible as the intensity of these forces increases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据