4.7 Article

Dynamical evolution of star-forming regions

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stt2231

关键词

methods: numerical; stars: formation; open clusters and associations: general

资金

  1. STFC [ST/J001589/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [ST/J001589/1] Funding Source: researchfish

向作者/读者索取更多资源

We model the dynamical evolution of star-forming regions with a wide range of initial properties. We follow the evolution of the regions' substructure using the Q-parameter, we search for dynamical mass segregation using the Lambda(MSR) technique, and we also quantify the evolution of local density around stars as a function of mass using the Sigma(LDR) method. The amount of dynamical mass segregation measured by Lambda(MSR) is generally only significant for subvirial and virialized, substructured regions - which usually evolve to form bound clusters. The Sigma(LDR) method shows that massive stars attain higher local densities than the median value in all regions, even those that are supervirial and evolve to form (unbound) associations. We also introduce the Q - Sigma(LDR) plot, which describes the evolution of spatial structure as a function of mass-weighted local density in a star-forming region. Initially dense (>1000 stars pc(-2)), bound regions always have Q > 1, Sigma(LDR) > 2 after 5 Myr, whereas dense unbound regions always have Q < 1, Sigma(LDR) > 2 after 5 Myr. Less dense regions (< 100 stars pc(-2)) do not usually exhibit Sigma(LDR) > 2 values, and if relatively high local density around massive stars arises purely from dynamics, then the Q - Sigma(LDR) plot can be used to estimate the initial density of a star-forming region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据