4.7 Article

Dynamical evolution of black hole subsystems in idealized star clusters

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stt628

关键词

methods: numerical; globular clusters: general

资金

  1. University of Edinburgh Development Trust
  2. Science and Technology Facilities Council (STFC)
  3. Science and Technology Facilities Council [ST/F007108/1] Funding Source: researchfish
  4. STFC [ST/F007108/1] Funding Source: UKRI

向作者/读者索取更多资源

In this paper, globular star clusters which contain a subsystem of stellar mass black holes (BH) are investigated. This is done by considering two-component models, as these are the simplest approximation of more realistic multimass systems, where one component represents the BH population and the other represents all the other stars. These systems are found to undergo a long phase of evolution where the centre of the system is dominated by a dense BH subsystem. After mass segregation has driven most of the BH into a compact subsystem, the evolution of the BH subsystem is found to be influenced by the cluster in which it is contained. The BH subsystem evolves in such a way as to satisfy the energy demands of the whole cluster, just as the core of a one-component system must satisfy the energy demands of the whole cluster. The BH subsystem is found to exist for a significant amount of time. It takes approximately 10t(rh,i), where t(rh,i) is the initial half-mass relaxation time, from the formation of the compact BH subsystem up until the time when 90 per cent of the subsystem total mass is lost (which is 103 times the half-mass relaxation time of the BH subsystem at its time of formation). Based on theoretical arguments, the rate of mass-loss from the BH subsystem ((M) over dot(2)) is predicted to be -beta zeta M/(alpha t(rh)), where M is the total mass, t(rh) is the half-mass relaxation time and alpha, beta, zeta are three dimensionless parameters (see Section 2 of the main text for details). An interesting consequence of this is that the rate of mass-loss from the BH subsystem is approximately independent of the stellar mass ratio (m(2)/m(1)) and the total mass ratio (M-2/M-1) (in the range m(2)/m(1) greater than or similar to 10 and M-2/M-1 similar to 10(-2), where m(1) and m(2) are the masses of individual low-mass and high-mass particles, respectively, and M-1 and M-2 are the corresponding total masses). The theory is found to be in reasonable agreement with most of the results of a series of N-body simulations, and with all of the models if the value of zeta is suitably adjusted. Predictions based on theoretical arguments are also made about the structure of BH subsystems. Other aspects of the evolution are also considered such as the conditions for the onset of gravothermal oscillation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据