4.7 Article

Radiative cooling in collisionally ionized and photoionized plasmas

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sts570

关键词

atomic data; plasmas; methods: numerical

资金

  1. NSF [0908877, 1108928, 1109061]
  2. NASA [07-ATFP07-0124, 10-ATP10-0053, 10-ADAP10-0073]
  3. JPL [1430426]
  4. STScI [HST-AR-12125.01, GO-12560, HST-GO-12309]
  5. Belgian Science Policy Office through the ESA Prodex programme
  6. Direct For Mathematical & Physical Scien [1108928, 1109061] Funding Source: National Science Foundation

向作者/读者索取更多资源

We discuss recent improvements in the calculation of the radiative cooling in both collisionally ionized and photoionized plasmas. We are extending the spectral simulation code CLOUDY so that as much as possible of the underlying atomic data are taken from external data bases, some created by others and some developed by the CLOUDY team. This paper focuses on recent changes in the treatment of many stages of ionization of iron, and discusses its extensions to other elements. The H- and He-like ions are treated in the isoelectronic approach described previously. Fe II is a special case treated with a large model atom. Here we focus on Fe III through Fe XXIV, ions which are important contributors to the radiative cooling of hot (T similar to 10(5)-10(7) K) plasmas and for X-ray spectroscopy. We use the Chianti atomic data base to greatly expand the number of transitions in the cooling function. Chianti only includes lines that have atomic data computed by sophisticated methods. This limits the line list to lower excitation, longer wavelength, transitions. We had previously included lines from the Opacity Project data base, which tends to include higher energy, shorter wavelength, transitions. These were combined with various forms of the 'g-bar' approximation, a highly approximate method of estimating collision rates. For several iron ions the two data bases are almost entirely complementary. We adopt a hybrid approach in which we use Chianti where possible, supplemented by lines from the Opacity Project for shorter wavelength transitions. The total cooling including the lightest 30 elements differs from some previous calculations by significant amounts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据