4.7 Article

The Herschel census of infrared SEDs through cosmic time

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stt330

关键词

galaxies: evolution; galaxies: high-redshift; galaxies: starburst; infrared: galaxies; submillimetre: galaxies

资金

  1. CSA (Canada)
  2. NAOC (China)
  3. CEA (France)
  4. CNES (France)
  5. CNRS (France)
  6. ASI (Italy)
  7. MCINN (Spain)
  8. SNSB (Sweden)
  9. STFC (UK)
  10. UKSA (UK)
  11. NASA (USA)
  12. BMVIT (Austria)
  13. ESA-PRODEX (Belgium)
  14. CEA/CNES (France)
  15. DLR (Germany)
  16. ASI/INAF (Italy)
  17. CICYT/MCYT (Spain)
  18. STFC [ST/K001051/1, ST/K000977/1, ST/K00106X/1, ST/I005765/1, ST/L001314/1, ST/K000926/1, ST/F007027/1, ST/I000976/1] Funding Source: UKRI
  19. Science and Technology Facilities Council [ST/F007027/1, ST/K00106X/1, ST/K001051/1, ST/I005765/1, ST/I000976/1, ST/K000926/1, ST/L001314/1, ST/K000977/1] Funding Source: researchfish
  20. UK Space Agency [ST/J004812/1, ST/G003874/1, ST/F012373/1] Funding Source: researchfish

向作者/读者索取更多资源

Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS, GOODS-S and GOODS-N, we examine the dust properties of infrared (IR)-luminous (L-IR > 10(10) L-circle dot) galaxies at 0.1 < z < 2 and determine how these evolve with cosmic time. The unique angle of this work is the rigorous analysis of survey selection effects, making this the first study of the star-formation-dominated, IR-luminous population within a framework almost entirely free of selection biases. We find that IR-luminous galaxies have spectral energy distributions (SEDs) with broad far-IR peaks characterized by cool/extended dust emission and average dust temperatures in the 25-45 K range. Hot (T > 45 K) SEDs and cold (T < 25 K), cirrus-dominated SEDs are rare, with most sources being within the range occupied by warm starbursts such as M82 and cool spirals such as M51. We observe a luminosity-temperature (L-T) relation, where the average dust temperature of log [L-IR/L-circle dot] similar to 12.5 galaxies is about 10 K higher than that of their log [L-IR/L-circle dot] similar to 10.5 counterparts. However, although the increased dust heating in more luminous systems is the driving factor behind the L-T relation, the increase in dust mass and/or starburst size with luminosity plays a dominant role in shaping it. Our results show that the dust conditions in IR-luminous sources evolve with cosmic time: at high redshift, dust temperatures are on average up to 10 K lower than what is measured locally (z less than or similar to 0.1). This is manifested as a flattening of the L-T relation, suggesting that (ultra) luminous infrared galaxies [(U)LIRGs] in the early Universe are typically characterized by a more extended dust distribution and/or higher dust masses than local equivalent sources. Interestingly, the evolution in dust temperature is luminosity dependent, with the fraction of LIRGs with T < 35 K showing a two-fold increase from z similar to 0 to z similar to 2, whereas that of ULIRGs with T < 35 K shows a six-fold increase. Our results suggest a greater diversity in the IR-luminous population at high redshift, particularly for ULIRGs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据