4.7 Article

Massive Milky Way satellites in cold and warm dark matter: dependence on cosmology

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stt2105

关键词

galaxies: dwarf; galaxies: haloes; cosmology: theory

资金

  1. US Office of Naval Research
  2. Edison Memorial Graduate Training Program at the Naval Research Laboratory
  3. NASA [NNX10AH10G]
  4. NSF [CMMI1125285]
  5. NASA [NNX10AH10G, 133039] Funding Source: Federal RePORTER

向作者/读者索取更多资源

We investigate the claim that the largest subhaloes in high-resolution dissipationless cold dark matter (CDM) simulations of the Milky Way are dynamically inconsistent with observations of its most luminous satellites. We find that the inconsistency is largely attributable to the large values of Sigma(8) and n(s) adopted in the discrepant simulations, producing satellites that form too early and therefore are too dense. We find the tension between observations and simulations adopting parameters consistent with WMAP9 is greatly diminished, making the satellites a sensitive test of CDM. We find the Via Lactea II halo to be atypical for haloes in a WMAP3 cosmology, a discrepancy that we attribute to its earlier formation epoch than the mean for its mass. We also explore warm dark matter (WDM) cosmologies for 1-4 keV thermal relics. In 1 keV cosmologies, subhaloes have circular velocities at kpc scales similar to 60 per cent lower than their CDM counterparts, but are reduced by only 10 per cent in 4 keV cosmologies. Since relic masses < 2-3 keV are ruled out by constraints from the number of Milky Way satellites and Lyman alpha forest, WDM has a minor effect in reducing the densities of massive satellites. Given the uncertainties on the mass and formation epoch of the Milky Way, the need for reducing the satellite densities with baryonic effects or WDM is alleviated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据