4.7 Article

Growing dust grains in protoplanetary discs - I. Radial drift with toy growth models

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stt1927

关键词

hydrodynamics; methods: analytical; planets and satellites: formation; protoplanetary discs; dust; extinction

资金

  1. Programme National de Physique Stellaire
  2. Programme National de Planetologie of CNRS/INSU, France
  3. Agence Nationale de la Recherche (ANR) of France [ANR-07-BLAN-0221]
  4. Swinburne Special Studies Program
  5. Australian Research Council [DP1094585]
  6. European Research Council
  7. Lyon Institute of Origins [ANR-10-LABX-66]
  8. Australian Research Council [DP1094585] Funding Source: Australian Research Council

向作者/读者索取更多资源

In a series of papers, we present a comprehensive analytic study of the global motion of growing dust grains in protoplanetary discs, addressing both the radial drift and the vertical settling of the particles. Here we study how the radial drift of dust particles is affected by grain growth. In a first step, toy models in which grain growth can either be constant, accelerate or decelerate are introduced. The equations of motion are analytically integrable and therefore the grains dynamics is easy to understand. The radial motion of growing grains is governed by the relative efficiency of the growth and migration processes which is expressed by the dimensionless parameter Lambda, as well as the exponents for the gas surface density and temperature profiles, denoted by p and q, respectively. When Lambda is of the order of unity, growth and migration are strongly coupled, providing the most efficient radial drift. For the toy models considered, grains pile up when -p + q + 1/2 < 0. Importantly, we show the existence of a second process which can help discs to retain their solid materials. For accelerating growth, grains end up their migration at a finite radius, thus avoiding being accreted on to the central star.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据