4.7 Article

Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2966.2012.21164.x

关键词

galaxies: evolution; galaxies: formation; galaxies: general; galaxies: star formation

资金

  1. University of Sydney
  2. Royal Society [DEGAS-259586]
  3. STFC (UK)
  4. ARC (Australia)
  5. AAO
  6. Science and Technology Facilities Council [ST/H00131X/1, ST/J002291/1, ST/H008578/1, ST/G001979/1, ST/H007156/1, ST/H002391/1, ST/J001465/1, ST/G001987/1, ST/I000976/1, ST/I003088/1, ST/I001212/1, PP/E001149/1, ST/K003577/1] Funding Source: researchfish
  7. STFC [ST/J002291/1, ST/H008578/1, ST/I000976/1, ST/H00131X/1, ST/H007156/1, ST/I003088/1, ST/G001979/1, ST/I001212/1, ST/G001987/1, PP/E001149/1, ST/H002391/1, ST/J001465/1, ST/K003577/1] Funding Source: UKRI

向作者/读者索取更多资源

We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFRdensity relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFRdensity trend is only visible when we include the passive galaxy population along with the star-forming population. This SFRdensity relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHa on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a star-forming sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHa with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFRdensity relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据