4.7 Review

Cosmological implications from the full shape of the large-scale power spectrum of the SDSS DR7 luminous red galaxies

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2012.20497.x

关键词

cosmological parameters; cosmology: observations; cosmology: theory; large-scale structure of Universe

资金

  1. Trans-regional Collaborative Research Centre TRR33 The Dark Universe of the German Research Foundation (DFG)
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. U.S. Department of Energy
  5. National Aeronautics and Space Administration
  6. Japanese Monbukagakusho
  7. Max Planck Society
  8. Higher Education Funding Council for England
  9. American Museum of Natural History
  10. Astrophysical Institute Potsdam
  11. University of Basel
  12. University of Cambridge
  13. Case Western Reserve University
  14. University of Chicago
  15. Drexel University
  16. Fermilab
  17. Institute for Advanced Study
  18. Japan Participation Group
  19. Johns Hopkins University
  20. Joint Institute for Nuclear Astrophysics
  21. Kavli Institute for Particle Astrophysics and Cosmology
  22. Korean Scientist Group
  23. Chinese Academy of Sciences (LAMOST)
  24. Los Alamos National Laboratory
  25. Max-Planck-Institute for Astronomy (MPIA)
  26. Max-Planck-Institute for Astrophysics (MPA)
  27. New Mexico State University
  28. Ohio State University
  29. University of Pittsburgh
  30. University of Portsmouth
  31. Princeton University
  32. United States Naval Observatory
  33. University of Washington

向作者/读者索取更多资源

We obtain cosmological constraints from a measurement of the spherically averaged power spectrum of the distribution of about 90 000 luminous red galaxies (LRGs) across 7646 deg2 in the Northern Galactic Cap from the seventh data release (DR7) of the Sloan Digital Sky Survey. The errors and mode correlations are estimated thanks to the 160 LasDamas mock catalogues, created in order to simulate the same galaxies and to have the same selection as the data. We apply a model that can accurately describe the full shape of the power spectrum with the use of a small number of free parameters. Using the LRG power spectrum, in combination with the latest measurement of the temperature and polarization anisotropy in the cosmic microwave background (CMB), the luminositydistance relation from the largest available Type 1a supernovae (SNIa) data set and a precise determination of the local Hubble parameter, we obtain cosmological constraints for five different parameter spaces. When all the four experiments are combined, the flat ?CDM model is characterized by , Ob= 0.045 +/- 0.001, ns= 0.963 +/- 0.011, s8= 0.802 +/- 0.021 and H0= 71.2 +/- 1.4 km s-1 Mpc-1. When we consider curvature as a free parameter, we do not detect deviations from flatness: Ok= (1.6 +/- 5.4) x 10(-3), when only CMB and the LRG power spectrum are used; the inclusion of the other two experiments does not improve this result substantially. We also test for possible deviations from the cosmological constant paradigm. Considering the dark energy equation of state parameter wDE as time independent, we measure , if the geometry is assumed to be flat, otherwise. When describing wDE through a simple linear function of the scale factor, our results do not evidence any time evolution. In the next few years new experiments will allow us to measure the clustering of galaxies with a precision much higher than achievable today. Models like the one used here will be a valuable tool in order to achieve the full potentials of the observations and obtain unbiased constraints on the cosmological parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据