4.7 Article

Galaxy evolution in cosmological simulations with outflows - I. Stellar masses and star formation rates

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2011.18680.x

关键词

methods: numerical; galaxies: formation; intergalactic medium; cosmology: theory

资金

  1. NASA, Space Telescope Science Institute [HST-AR-11751, NAS5-26555]
  2. National Science Foundation [AST-0847667, AST-0907998, DMS-0619881]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Astronomical Sciences [0847667] Funding Source: National Science Foundation
  5. Direct For Mathematical & Physical Scien
  6. Division Of Astronomical Sciences [0907998] Funding Source: National Science Foundation

向作者/读者索取更多资源

We examine the growth of the stellar content of galaxies from z = 3 -> 0 in cosmological hydrodynamic simulations incorporating parametrized galactic outflows. Without outflows, galaxies overproduce stellar masses (M-*) and star formation rates (SFRs) compared to observations. Winds introduce a three-tier form for the galaxy stellar mass and star formation rate functions, where the middle tier depends on the differential (i.e. mass-dependent) recycling of ejected wind material back into galaxies. A tight M-*-SFR relation is a generic outcome of all these simulations and its evolution is well described as being powered by cold accretion, although current observations at z greater than or similar to 2 suggest that the star formation in small early galaxies must be highly suppressed. Roughly, one-third of z = 0 galaxies at masses below M* are satellites and the star formation in satellites is not much burstier than in centrals. All models fail to suppress the star formation and stellar mass growth in massive galaxies at z less than or similar to 2, indicating the need for an external quenching mechanism such as black hole feedback. All models also fail to produce dwarfs as young and rapidly star forming as observed. An outflow model following scalings expected for momentum-driven winds broadly matches the observed galaxy evolution around M* from z = 0 to 3, which is a significant success since these galaxies dominate cosmic star formation, but the failures at higher and lower masses highlight the challenges still faced by this class of models. We argue that central star-forming galaxies are well described as living in a slowly evolving equilibrium between inflows from gravity and recycled winds, star formation, and strong and ubiquitous outflows that regulate how much inflow forms into stars. Star-forming galaxy evolution is thus primarily governed by the continual cycling of baryons between galaxies and intergalactic gas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据