4.7 Article

Non-equilibrium ionization states and cooling rates of photoionized enriched gas

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2011.18623.x

关键词

atomic processes; plasmas; galaxies: general; intergalactic medium; quasars: general; diffuse radiation

资金

  1. RFBR [08-02-91321, 09-02-90726, 09-02-00933, 10-02-90705, 11-02-90701]
  2. Federal Agency of Education [RNP 2.1.1/1937]
  3. Federal Agency of Science and Innovations [02.740.11.0247]

向作者/读者索取更多资源

Non-equilibrium (time-dependent) cooling rates and ionization state calculations are presented for low-density gas enriched with heavy elements (metals) and photoionized by external ultraviolet/X-ray radiation. We consider a wide range of gas densities and metallicities and also two types of external radiation field: a power-law and an extragalactic background spectra. We have found that both cooling efficiencies and ionic composition of enriched photoionized gas depend significantly on the gas metallicity and density, the flux amplitude and the shape of ionizing radiation spectrum. The cooling rates and ionic composition of the gas in non-equilibrium photoionization models differ strongly (by a factor of several) from those in photoequilibrium due to overionization of the ionic states in the non-equilibrium case. The difference is maximal at low values of the ionization parameter and similar in magnitude to that between the equilibrium and non-equilibrium cooling rates in the collisionally controlled gas. In general, the non-equilibrium effects are notable at T less than or similar to 10(6) K. In this temperature range, the extent of mismatch between the two ionic states and their ratios between the photoequilibrium and the photo-non-equilibrium models reach a factor of several. The net result is that the time-dependent energy losses due to each chemical element (i.e. the contributions to the total cooling rate) differ significantly from the photoequilibrium ones. We advocate the use of non-equilibrium cooling rates and ionic states for gas with near-solar (and above) metallicity exposed to an arbitrary ionizing radiation flux. We provide a parameter space (in terms of temperature, density, metallicity and ionizing radiation flux), where the non-equilibrium cooling rates are to be used. More quantitatively, the non-equilibrium collisional cooling rates and ionization states are a better choice for the ionization parameter log U less than or similar to -5. The difference between the photoequilibrium and the photo-non-equilibrium decreases with the ionization parameter growth, and the photoequilibrium can be used for ionization parameter as high as log U greater than or similar to -2 for Z less than or similar to 10(-2) Z(circle dot) and log U greater than or similar to 0 for Z similar to Z(circle dot). Thus, the non-equilibrium calculations should be used for the ionization parameter range between the above-mentioned values. In general, where the physical conditions favour collisional ionization, the non-equilibrium (photo)ionization calculations should be conducted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据