4.7 Article

Importance of the initial conditions for star formation - I. Cloud evolution and morphology

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2011.18348.x

关键词

hydrodynamics; instabilities; turbulence; stars: formation; stars: massive; stars: statistics

资金

  1. Julich supercomputing centre [NIC 3433]
  2. CASPUR centre [cmp09-849]
  3. International Max Planck Research School for Astronomy and Cosmic Physics (IMPRS-A)
  4. Heidelberg Graduate School of Fundamental Physics (HGSFP)
  5. Excellence Initiative of the Deutsche Forschungsgemeinschaft (DFG) [GSC 129/1]
  6. Landesstiftung Baden-Wurrtemberg [P-LS-SPII/18]
  7. German Bundesministerium fur Bildung und Forschung [05A09VHA]
  8. European Research Council under the European Community [247060]
  9. DFG [BA 3706/1-1, KL1358/1, KL1358/4, KL1358/5, KL1358/10, KL1358/11]
  10. FRONTIER initiative of the University of Heidelberg
  11. German Excellence Initiative
  12. US Department of Energy [DEAC-02-76SF00515]

向作者/读者索取更多资源

We present a detailed parameter study of collapsing turbulent cloud cores, varying the initial density profile and the initial turbulent velocity field. We systematically investigate the influence of different initial conditions on the star formation process, mainly focusing on the fragmentation, the number of formed stars and the resulting mass distributions. Our study compares four different density profiles (uniform, Bonnor-Ebert type, proportional to r-1.5 and proportional to r-2), combined with six different supersonic turbulent velocity fields (compressive, mixed and solenoidal, initialized with two different random seeds each) in three-dimensional simulations using the adaptive-mesh refinement, hydrodynamics code flash. The simulations show that density profiles with flat cores produce hundreds of low-mass stars, either distributed throughout the entire cloud or found in subclusters, depending on the initial turbulence. Concentrated density profiles always lead to the formation of one high-mass star in the centre of the cloud and, if at all, low-mass stars surrounding the central one. In uniform and Bonnor-Ebert type density distributions, compressive initial turbulence leads to local collapse about 25 per cent earlier than solenoidal turbulence. However, central collapse in the steep power-law profiles is too fast for the turbulence to have any significant influence. We conclude that (i) the initial density profile and turbulence mainly determine the cloud evolution and the formation of clusters, (ii) the initial mass function (IMF) is not universal for all setups and (iii) that massive stars are much less likely to form in flat density distributions. The IMFs obtained in the uniform and Bonnor-Ebert type density profiles are more consistent with the observed IMF, but shifted to lower masses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据