4.7 Article

Fast and accurate computation of the aberration kernel for the cosmic microwave background sky

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2966.2011.18934.x

关键词

cosmic background radiation; cosmology: observations; cosmology: theory

资金

  1. Beatrice D. Tremaine fellowship

向作者/读者索取更多资源

It is well known that our motion with respect to the cosmic microwave background (CMB) est frame introduces a large dipolar CMB anisotropy, with an amplitude alpha beta = v/c similar to 10(-3). In addition it should lead to a small breaking of statistical isotropy which becomes most notable at higher multipoles. In principle this could be used to determine our velocity with respect to the CMB rest frame using high angular resolution data from Planck, without directly relying on the amplitude and direction of the CMB dipole, allowing us to constrain cosmological models in which the cosmic dipole arises partly from large-scale isocurvature perturbations instead of being fully motion-induced. Here, we derive simple recursion relations that allow precise computation of the motion-induced coupling between different spherical harmonic coefficients. Although the lowest order approximations for the coupling kernel can be deficient by factors of 2-5 at multipoles l similar to 1000-3000, using our results for the aberration kernel we explicitly confirm that for a statistical detection of the aberration effect only first-order terms in beta matter. However, the expressions given here are not restricted to beta similar to 10(-3), but can be used at much higher velocities. We demonstrate the robustness of these formulae, illustrating the dependence of the kernel on beta, as well as the spherical harmonic indices l and m.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据