4.7 Article

Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the Galactic Centre black hole

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2010.18084.x

关键词

black hole physics; instrumentation: interferometers; astrometry; Galaxy: centre

资金

  1. Region Ile-de-France

向作者/读者索取更多资源

The Galactic Central black hole Sgr A* exhibits outbursts of radiation in the near-infrared (so-called IR flares). One model of these events consists in a hotspot orbiting on the innermost stable circular orbit (ISCO) of the hole. These outbursts can be used as a probe of the central gravitational potential. One main scientific goal of the second-generation VLTI instrument GRAVITY is to observe these flares astrometrically. Here, the astrometric precision of GRAVITY is investigated in the imaging mode, which consists in analysing the image computed from the interferometric data. The capability of the instrument to put in light the motion of a hotspot orbiting on the ISCO of our central black hole is then discussed. We find that GRAVITY's astrometric precision for a single star in the imaging mode is smaller than the Schwarzschild radius of Sgr A*. The instrument can also demonstrate that a body orbiting on the last stable orbit of the black hole is indeed moving. It yields a typical size of the orbit, if the source is as bright as m(K) = 14. These results show that GRAVITY allows one to study the close environment of Sgr A*. Having access to the ISCO of the central massive black hole probably allows constraining general relativity in its strong regime. Moreover, if the hotspot model is appropriate, the black hole spin can be constrained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据