4.7 Article

Luminosity function and radial distribution of Milky Way satellites in a ΛCDM Universe

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2966.2009.16031.x

关键词

gravitation; methods: N-body simulation; methods: numerical; galaxies: haloes; cosmology: theory; dark matter

资金

  1. National Science Foundation [NSF PHY05-51164]
  2. DFG
  3. EARA-EST Marie Curie
  4. STFC [PP/E00105X/1] Funding Source: UKRI
  5. Science and Technology Facilities Council [ST/H00243X/1, PP/E00105X/1] Funding Source: researchfish

向作者/读者索取更多资源

We study the luminosity function (LF) and the radial distribution of satellite galaxies within Milky Way (MW) sized haloes as predicted in cold dark matter based models of galaxy formation, making use of numerical N-body techniques as well as three different semi-analytic models (SAMs) galaxy formation codes. We extract merger trees from very high-resolution dissipationless simulations of four Galaxy-sized DM haloes, and use these as common input for the SAMs. We present a detailed comparison of our predictions with the observational data recently obtained on the MW satellite LF. We find that SAMs with rather standard astrophysical ingredients are able to reproduce the observed LF over six orders of magnitude in luminosity, down to magnitudes as faint as M-V = -2. We also perform a comparison with the actual observed number of satellites as a function of luminosity, by applying the selection criteria of the SDSS survey to our simulations instead of correcting the observations for incompleteness. Using this approach, we again find good agreement for both the luminosity and radial distributions of MW satellites. We investigate which physical processes in our models are responsible for shaping the predicted satellite LF, and find that tidal destruction, suppression of gas infall by a photoionizing background, and supernova feedback all make important contributions. We conclude that the number and luminosity of MW satellites can be naturally accounted for within the (Lambda)cold dark matter paradigm, and this should no longer be considered a problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据