4.7 Article

On the co-evolution of supermassive black holes and their host galaxies since z=3

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2010.17521.x

关键词

black hole physics; galaxies: active; galaxies: evolution

资金

  1. STFC
  2. Science and Technology Facilities Council [ST/F00298X/1] Funding Source: researchfish
  3. STFC [ST/F00298X/1] Funding Source: UKRI

向作者/读者索取更多资源

To investigate the evolution in the relation between galaxy stellar and central black hole mass, we identify a population of 508 X-ray-selected active galactic nuclei (AGN) at 0.4 < z < 6 residing within host galaxies with stellar masses in the range 1010 M-circle dot < M-* < 1012 M-circle dot. From this sample we construct a volume-limited complete sample of 85 AGN with host galaxy stellar masses M-* > 1010.5 M-circle dot, and specific X-ray luminosities L-X > 2.35 x 1043 erg s-1 at 0.4 < z < 3. We calculate the Eddington limiting masses of the supermassive black holes (SMBHs) residing at the centre of these galaxies, and observe an increase in the average Eddington limiting black hole mass with redshift. While the black hole mass and Eddington ratio, mu, are degenerate, if we assume that the local M-BH - M-* relation holds at all redshifts we find that the mean Eddington ratio mu rises from 0.056 +/- 0.010 at z = 0.7 to 0.087 +/- 0.011 at z = 1.25, with no significant evolution thereafter to z = 3. Alternatively, by assuming that there is no evolution in mu and then that there is maximum possible evolution to the Eddington limit, we quantify the maximum possible evolution in the M-*/M-BH ratio as lying in the range 700 < M-*/M-BH < 10 000, compared with the local value of M-*/M-BH similar to 1000. We furthermore find that the fraction of galaxies which are AGN (with L-X > 2.35 x 1043 erg s-1) rises with redshift from 1.2 +/- 0.2 per cent at z = 0.7 to 7.4 +/- 2.0 per cent at z = 2.5. We use our results to calculate the maximum time-scales for which our sample of AGN can continue to accrete at their observed rates before surpassing the local galaxy-black hole mass relation. We use these time-scales to calculate the total fraction of massive galaxies which will be active (with L-X > 2.35 x 1043 erg s-1) since z = 3, finding that at least similar to 40 per cent of all massive galaxies will be Seyfert luminosity AGN or brighter during this epoch. Further, we calculate the energy density due to AGN activity in the Universe as 1.0 (+/- 0.3) x 1057 erg Mpc-3 Gyr-1, potentially providing a significant source of energy for AGN feedback on star formation. We also use this method to compute the evolution in the X-ray luminosity density of AGN with redshift, finding that massive galaxy Seyfert luminosity AGN are the dominant source of X-ray emission in the Universe at z < 3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据