4.7 Article

Incorporating photometric redshift probability density information into real-space clustering measurements

期刊

出版社

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-2966.2009.15432.x

关键词

methods: analytical; methods: statistical; surveys; quasars: general; galaxies: statistics; large-scale structure of Universe

资金

  1. NASA
  2. University of Illinois
  3. DOE
  4. Alfred P. Sloan Foundation
  5. National Science Foundation
  6. U.S. Department of Energy
  7. National Aeronautics and Space Administration
  8. Japanese Monbukagakusho
  9. Max Planck Society
  10. Higher Education Funding Council for England
  11. [NNX08AJ28G]

向作者/读者索取更多资源

The use of photometric redshifts in cosmology is increasing. Often, however these photo-z are treated like spectroscopic observations, in that the peak of the photometric redshift, rather than the full probability density function (PDF), is used. This overlooks useful information inherent in the full PDF. We introduce a new real-space estimator for one of the most used cosmological statistics, the two-point correlation function, that weights by the PDF of individual photometric objects in a manner that is optimal when Poisson statistics dominate. As our estimator does not bin based on the PDF peak, it substantially enhances the clustering signal by usefully incorporating information from all photometric objects that overlap the redshift bin of interest. As a real-world application, we measure quasi-stellar object (QSO) clustering in the Sloan Digital Sky Survey (SDSS). We find that our simplest binned estimator improves the clustering signal by a factor equivalent to increasing the survey size by a factor of 2-3. We also introduce a new implementation that fully weights between pairs of objects in constructing the cross-correlation and find that this pair-weighted estimator improves clustering signal in a manner equivalent to increasing the survey size by a factor of 4-5. Our technique uses spectroscopic data to anchor the distance scale and it will be particularly useful where spectroscopic data (e.g. from BOSS) overlap deeper photometry (e.g. from Pan-STARRS, DES or the LSST). We additionally provide simple, informative expressions to determine when our estimator will be competitive with the autocorrelation of spectroscopic objects. Although we use QSOs as an example population, our estimator can and should be applied to any clustering estimate that uses photometric objects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据