4.7 Article

The test for suppressed dynamical friction in a constant density core of dwarf galaxies

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2009.15066.x

关键词

methods: N-body simulations; galaxies: dwarf; galaxies: kinematics and dynamics; galaxies: star clusters; galaxies: structure

向作者/读者索取更多资源

The dynamical friction problem is a long-standing dilemma about globular clusters (hereafter GCs) belonging to dwarf galaxies. GCs are strongly affected by dynamical friction in dwarf galaxies, and are presumed to fall into the galactic centre. But, GCs do exist in dwarf galaxies generally. A solution of the problem has been proposed. If dwarf galaxies have a core dark matter halo which has constant density distribution in its centre, the effect of dynamical friction will be weakened considerably, and GCs should be able to survive beyond the age of the Universe. Then, the solution argued that, in a cored dark halo, interaction between the halo and the GC constructs a new equilibrium state, in which a part of the halo rotates along with the GC (corotating state). The equilibrium state can suppress the dynamical friction in the core region. In this study, I tested whether the solution is reasonable and reconsidered why a constant density, core halo suppresses dynamical friction, by means of N-body simulations. As a result, I conclude that the true mechanism of suppressed dynamical friction is not the corotating state, although a core halo can actually suppress dynamical friction on GCs significantly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据