4.7 Article

Methods for rapidly processing angular masks of next-generation galaxy surveys

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2008.13296.x

关键词

methods : data analysis; surveys; large-scale structure of universe

向作者/读者索取更多资源

As galaxy surveys become larger and more complex, keeping track of the completeness, magnitude limit and other survey parameters as a function of direction on the sky becomes an increasingly challenging computational task. For example, typical angular masks of the Sloan Digital Sky Survey contain about N = 300 000 distinct spherical polygons. Managing masks with such large numbers of polygons becomes intractably slow, particularly for tasks that run in time O(N-2) with a naive algorithm, such as finding which polygons overlap each other. Here we present a 'divide-and-conquer' solution to this challenge: we first split the angular mask into pre-defined regions called 'pixels', such that each polygon is in only one pixel, and then perform further computations, such as checking for overlap, on the polygons within each pixel separately. This reduces O(N-2) tasks to O(N), and also reduces the important task of determining in which polygon(s) a point on the sky lies from O(N) to O(1), resulting in significant computational speedup. Additionally, we present a method to efficiently convert any angular mask to and from the popular HEALPIX format. This method can be generically applied to convert to and from any desired spherical pixelization. We have implemented these techniques in a new version of the MANGLE software package, which is freely available at http://space.mit.edu/home/tegmark/mangle/, along with complete documentation and example applications. These new methods should prove quite useful to the astronomical community, and since MANGLE is a generic tool for managing angular masks on a sphere, it has the potential to benefit terrestrial mapmaking applications as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据