4.7 Article

Observational biases in Lagrangian reconstructions of cosmic velocity fields

期刊

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2966.2007.12539.x

关键词

methods : analytical and numerical; galaxies : distances and redshifts; dark matter; cosmological parameters

向作者/读者索取更多资源

Lagrangian reconstruction of large-scale peculiar velocity fields can be strongly affected by observational biases. We develop a thorough analysis of these systematic effects by relying on specially selected mock catalogues. For the purpose of this paper, we use the Monge-Ampere-Kantorovitch (MAK) reconstruction method, although any other Lagrangian reconstruction method should be sensitive to the same problems. We extensively study the uncertainty in the mass-to-light assignment due to incompleteness (missing luminous mass tracers), and the poorly determined relation between mass and luminosity. The impact of redshift distortion corrections is analysed in the context of MAK and we check the importance of edge and finite-volume effects on the reconstructed velocities. Using three mock catalogues with different average densities, we also study the effect of cosmic variance. In particular, one of them presents the same global features as found in observational catalogues that extend to 80 h(-1) Mpc scales. We give recipes, checked using the aforementioned mock catalogues, to handle these particular observational effects, after having introduced them into the mock catalogues so as to quantitatively mimic the most densely sampled currently available galaxy catalogue of the nearby Universe. Once biases have been taken care of, the typical resulting error in reconstructed velocities is typically about a quarter of the overall velocity dispersion, and without significant bias. We finally model our reconstruction errors to propose an improved Bayesian approach to measure Omega(m) in an unbiased way by comparing the reconstructed velocities to the measured ones in distance space, even though they may be plagued by large errors. We show that, in the context of observational data, it is possible to build a nearly unbiased estimator of Omega(m) using MAK reconstruction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据