4.7 Article

Three-dimensional stability of magnetically confined mountains on accreting neutron stars

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2008.13139.x

关键词

accretion; accretion discs; stars : magnetic fields; stars : neutron; pulsars : general

向作者/读者索取更多资源

We examine the hydromagnetic stability of magnetically confined mountains, which arise when material accumulates at the magnetic poles of an accreting neutron star. We extend a previous axisymmetric stability analysis by performing three-dimensional simulations using the ideal-magnetohydrodynamic (ideal-MHD) code ZEUS-MP, investigating the role played by boundary conditions, accreted mass, stellar curvature and (briefly) toroidal magnetic field strength. We find that axisymmetric equilibria are susceptible to the undular submode of the Parker instability but are not disrupted. The line-tying boundary condition at the stellar surface is crucial in stabilizing the mountain. The non-linear three-dimensional saturation state of the instability is characterized by a small degree of non-axisymmetry (less than or similar to 0.1 per cent) and a mass ellipticity of epsilon similar to 10(-5) for an accreted mass of = 10(-5) M-circle dot. Hence, there is a good prospect of detecting gravitational waves from accreting millisecond pulsars with long-baseline interferometers such as Advanced Laser Interferometer Gravitational-Wave Observatory. We also investigate the ideal-MHD spectrum of the system, finding that long-wavelength poloidal modes are suppressed in favour of toroidal modes in the non-axisymmetric saturation state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据