4.7 Article

An explosive end to intermediate-mass zero-metallicity stars and early universe nucleosynthesis

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2007.12816.x

关键词

stars : abundances; stars : AGB and post-AGB; stars : evolution; supernovae : general

向作者/读者索取更多资源

We use the Cambridge stellar evolution code STARS to model the evolution of 5 and 7 M-circle dot zero-metallicity stars. With enhanced resolution at the hydrogen- and helium-burning shell in the asymptotic giant branch (AGB) phases, we are able to model the entire thermally pulsing AGB (TP-AGB) phase. The helium luminosities of the thermal pulses are significantly lower than in higher metallicity stars so there is no third dredge-up. The envelope is enriched in nitrogen by hot-bottom burning of carbon that was previously mixed in during second dredge-up. There is no s-process enrichment owing to the lack of third dredge-up. The thermal pulses grow weaker as the core mass increases and they eventually cease. From then on the star enters a quiescent burning phase which lasts until carbon ignites at the centre of the star when the CO core mass is 1.36 M-circle dot. With such a high degeneracy and a core mass so close to the Chandrasekhar mass, we expect these stars to explode as type 1.5 supernovae, very similar to type Ia supernovae but inside a hydrogen-rich envelope.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据