4.7 Article

Oscillating pulsar polar gaps

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2008.13321.x

关键词

acceleration of particles; radiation mechanisms : non-thermal; pulsars : general

向作者/读者索取更多资源

An analytical model for oscillating pair creation above the pulsar polar cap is presented in which the parallel electric field is treated as a large amplitude, superluminal, electrostatic wave. An exact formalism for such wave is derived in one dimension and applied to both the low-density regime in which the pair plasma density is much lower than the corotating charge density and the high-density regime in which the pair plasma density is much higher than the corotating charge density. In the low-density regime, which is relevant during the phase leading to a pair cascade, a parallel electric field develops resulting in a rapid acceleration of particles. The rapid acceleration leads to bursts of pair production and the system switches to the oscillatory phase, corresponding to the high-density regime, in which pairs oscillate with net drift motion in the direction of wave propagation. Oscillating pairs lead to a current that oscillates with large amplitude about the Goldreich-Julian current. The drift motion can be highly relativistic if the phase speed of large amplitude waves is moderately higher than the speed of light. Thus, the model predicts a relativistic outflow of pairs, a feature that is required for avoiding overheating of the pulsar polar cap and is also needed for the pulsar wind.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据