4.7 Article

Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2966.2008.14004.x

关键词

galaxies: evolution; galaxies: interactions; galaxies: structure

资金

  1. NOAO Leo Goldberg Fellowship, NASA [NAG5-11513, HST-AR-9998, HST-AR-10678, HST-AR-10958, NAS5-26555]
  2. National Energy Research Scientific Computing Center (NERSC)
  3. Office of Science of the US Department of Energy

向作者/读者索取更多资源

A key obstacle to understanding the galaxy merger rate and its role in galaxy evolution is the difficulty in constraining the merger properties and time-scales from instantaneous snapshots of the real Universe. The most common way to identify galaxy mergers is by morphology, yet current theoretical calculations of the time-scales for galaxy disturbances are quite crude. We present a morphological analysis of a large suite of GADGET N-body/hydrodynamical equal-mass gas-rich disc galaxy mergers which have been processed through the Monte Carlo radiative transfer code SUNRISE. With the resulting images, we examine the dependence of quantitative morphology ( G, M(20), C, A) in the SDSS g band on merger stage, dust, viewing angle, orbital parameters, gas properties, supernova feedback and total mass. We find that mergers appear most disturbed in G - M(20) and asymmetry at the first pass and at the final coalescence of their nuclei, but can have normal quantitative morphologies at other merger stages. The merger observability time-scales depend on the method used to identify the merger as well as the gas fraction, pericentric distance and relative orientation of the merging galaxies. Enhanced star formation peaks after and lasts significantly longer than strong morphological disturbances. Despite their massive bulges, the majority of merger remnants appear disc-like and dusty in g-band light because of the presence of a low-mass star-forming disc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据