4.7 Article

Testing the blazar spectral sequence: X-ray-selected blazars

期刊

出版社

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-2966.2008.14030.x

关键词

radiation mechanisms: non-thermal; galaxies: active; galaxies: jets

资金

  1. Jet Propulsion Laboratory, California Institute of Technology
  2. National Aeronautics and Space Administration
  3. Alfred P. Sloan Foundation
  4. Participating Institutions
  5. National Science Foundation
  6. US Department of Energy
  7. Japanese Monbukagakusho
  8. Max Planck Society
  9. Higher Education Funding Council for England
  10. American Museum of Natural History
  11. Astrophysical Institute Potsdam
  12. University of Basel
  13. University of Cambridge
  14. Case Western Reserve University
  15. University of Chicago, Drexel University, Fermilab
  16. Institute for Advanced Study
  17. Japan Participation Group
  18. Johns Hopkins University
  19. Joint Institute for Nuclear Astrophysics
  20. Kavli Institute for Particle Astrophysics and Cosmology
  21. Korean Scientist Group
  22. Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory
  23. Max-Planck-Institute for Astronomy (MPIA)
  24. Max-Planck-Institute for Astrophysics (MPA)
  25. New Mexico State University
  26. Ohio State University
  27. University of Pittsburgh
  28. University of Portsmouth
  29. Princeton University
  30. United States Naval Observatory
  31. University of Washington
  32. ASI/INAF [I/088/06/0]

向作者/读者索取更多资源

We present simultaneous optical and X-ray data from Swift for a sample of radio-loud flat-spectrum quasars selected from the Einstein Medium Sensitivity Survey (EMSS). We present also a complete analysis of Swift and INTEGRAL data on four blazars recently discussed as possibly challenging the trends of the hypothesized 'blazar spectral sequence'. The spectral energy distributions (SEDs) of all these objects are modelled in terms of a general theoretical scheme, applicable to all blazars, leading to an estimate of the jets' physical parameters. Our results show that, in the case of the EMSS broad line blazars, X-ray selection does not lead to find sources with synchrotron peaks in the UV/X-ray range, as was the case for X-ray-selected BL Lacs. Instead, for a wide range of radio powers all the sources with broad emission lines show similar SEDs, with synchrotron components peaking below the optical/UV range. The SED models suggest that the associated inverse Compton (IC) emission should peak below the GeV range, but could be detectable in some cases by the Fermi Gamma-ray Space Telescope. Of the remaining four 'anomalous' blazars, two highly luminous sources with broad lines, claimed to possibly emit synchrotron X-rays, are shown to be better described with IC models for their X-ray emission. For one source with weak emission lines ( a BL Lac object) a synchrotron peak in the soft X-ray range is confirmed, while for the fourth source, exhibiting narrow emission lines typical of narrow-line Seyfert 1 galaxies, no evidence of X-ray emission from a relativistic jet is found. We re-examine the standing and interpretation of the original 'blazar spectral sequence' and suggest that the photon ambient, in which the particle acceleration and emission occur, is likely the main factor determining the shape of the blazar SED. A connection between SED shape and jet power/luminosity can however result through the link between the mass and accretion rate of the central black hole and the radiative efficiency of the resulting accretion flow, thus involving at least two parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据