4.7 Article

Targeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate

期刊

MOLECULAR THERAPY
卷 20, 期 1, 页码 109-118

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/mt.2011.163

关键词

-

资金

  1. National Institutes of Health [R01 HL082655, K22 CA120049]
  2. Yale Center of Excellence in Molecular Hematology (NIH) [DK072442]

向作者/读者索取更多资源

Hematopoietic stem cell (HSC) gene therapy offers promise for the development of new treatments for a variety of hematologic disorders. However, efficient in vivo modification of HSCs has proved challenging, thus imposing constraints on the therapeutic potential of this approach. Herein, we provide a gene-targeting strategy that allows site-specific in vivo gene modification in the HSCs of mice. Through conjugation of a triplex-forming peptide nucleic acid (PNA) to the transport peptide, antennapedia (Antp), we achieved successful in vivo chromosomal genomic modification of hematopoietic progenitor cells, while still retaining intact differentiation capabilities. Following systemic administration of PNA-Antp conjugates, sequence-specific gene modification was observed in multiple somatic tissues as well as within multiple compartments of the hematopoietic system, including erythroid, myeloid, and lymphoid cell lineages. As a true functional measure of gene targeting in a long-term renewable HSC, we also demonstrate preserved genomic modification in the bone marrow and spleen of primary recipient mice following transplantation of bone marrow from PNA-Antp-treated donor mice. Our approach offers a minimally invasive alternative to ex vivo gene therapy, by eliminating the need for the complex steps of stem cell mobilization and harvesting, ex vivo manipulation, and transplantation of stem cells. Therefore, our approach may provide new options for individualized therapies in the treatment of monogenic hematologic diseases such as sickle cell anemia and thalassemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据