4.7 Review

The Chase for the RIG-I Ligand-Recent Advances

期刊

MOLECULAR THERAPY
卷 18, 期 7, 页码 1254-1262

出版社

CELL PRESS
DOI: 10.1038/mt.2010.90

关键词

-

资金

  1. Bundesministerium fur Bildung und Forschung Biofuture and GoBio
  2. Deutsche Forschungsgemeinschaft [SFB704, SFB670, SFB832, KFO177]

向作者/读者索取更多资源

Multicellular organisms evolved efficient host-defense mechanisms to sense viruses and to block their replication and spread. Invertebrates and plants mainly rely on RNA interference (RNAi) for antiviral defense. In mammals, the initiation of antiviral defense mechanisms is largely based on the detection of viral nucleic acids by innate receptors: retinoic acid-inducible gene I (RIG-I)-like helicases (RLHs) and Toll-like receptors (TLRs). RLHs play a pivotal role in sensing viral RNA and DNA in the cytoplasm of cells. RLHs, like Dicer of the RNAi pathway, belong to the phylogenetically conserved DExD/H-box family of helicases. Unlike TLRs, RLHs are functional in all somatic cells. Activation of RIG-I triggers antiviral responses including type I interferon (IFN), inflammasome activation and proapoptotic signaling. Here, we provide a comprehensive overview of the current literature on the ligand structures detected by RIG-I, and conclude with the molecular definition of the RIG-I ligand: short double-stranded blunt-end 5'-triphosphate RNA. The recent information on the RIG-I ligand now allows the design of short double-stranded RNA (dsRNA) oligonucleotides that are ideally suited alone or in combination with small-interfering RNA (siRNA) for the treatment of viral infection and cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据