4.7 Article

Self-complementary AAV vectors; Advances and applications

期刊

MOLECULAR THERAPY
卷 16, 期 10, 页码 1648-1656

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/mt.2008.171

关键词

-

资金

  1. National Institutes of Health [R01 AI070244]
  2. Research Institute at Nationwide Children's Hospital

向作者/读者索取更多资源

Numerous preclinical studies have demonstrated the efficacy of recombinant adeno-associated virus (rAAV) gene delivery vectors, and recent clinical trials have shown promising results. However, the efficiency of these vectors, in terms of the number of genome-containing particles required for transduction, is hindered by the need to convert the single-stranded DNA (ssDNA) genome into double-stranded DNA (dsDNA) prior to expression. This step can be entirely circumvented through the use of self-complementary vectors, which package an inverted repeat genome that can fold into dsDNA without the requirement for DNA synthesis or base-pairing between multiple vector genomes. The important trade-off for this efficiency is the loss of half the coding capacity of the vector, though small protein-coding genes (up to 55 kd), and any currently available RNA-based therapy, can be accommodated. The increases in efficiency gained with self-complementary AAV (scAAV) vectors have ranged from modest to stunning, depending on the tissue, cell type, and route of administration. Along with the construction and physical properties of self-complementary vectors, the basis of the varying responses in multiple tissues including liver, muscle, and central nervous system (CNS) will be explored in this review.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据