4.7 Article

Complete In Vivo reversal of the multidrug resistance phenotype by jet-injection of Anti-MDR1 short hairpin RNA-encoding plasmid DNA

期刊

MOLECULAR THERAPY
卷 16, 期 1, 页码 178-186

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.mt.6300304

关键词

-

向作者/读者索取更多资源

Triggering the RNA interference (RNAi) pathway by inducing the expression of short hairpin RNA (shRNA) molecules has become a promising tool for efficient silencing of a given gene in gene therapy applications. In this study, shRNA encoding DNA was utilized to reverse the classical MDR1/P-glycoprotein (MDR1/Pgp)mediated multidrug resistance (MDR) phenotype in vivo. For the first time, the nonviral jet-injection technology was applied for delivering naked shRNA-vector constructs for direct intratumoral in vivo transfer. The highly efficient anti-MDR1 shRNA expression vectors were applied twice in the human MDR1/P-gp over-expressing MaTu/ADR cancer xenograft-bearing mice, and twice in the corresponding drug-sensitive parental MaTu tumor xenograft bearing mice as well. Two days after anti-MDR1 shRNA vector injection, the expression level of the MDR1 messenger RNA (mRNA) was decreased by more than 90% and the corresponding MDR1/P-gp protein was no longer detectable in the tumors. Two jet-injections of anti-MDR1 shRNA vectors into the tumors, combined with two intravenous (IV) administrations of doxorubicin, were sufficient to achieve complete reversal of the drug-resistant phenotype. The data show that jet-injection delivery of shRNA-expressing vectors is effective in reversing MDR1/P-gp-mediated MDR in vivo, and is therefore a promising strategy for making tumors with an MDR1/Pgp-dependent MDR phenotype revert to a drug-sensitive state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据