4.6 Article

Synthetic conversion of a graded receptor signal into a tunable, reversible switch

期刊

MOLECULAR SYSTEMS BIOLOGY
卷 7, 期 -, 页码 -

出版社

WILEY
DOI: 10.1038/msb.2011.13

关键词

cell signaling; design principles; feedback; switch-like response; synthetic biology

资金

  1. American Heart Association [0835132N]
  2. National Science Foundation [1055231]
  3. University of Pennsylvania
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [1055231] Funding Source: National Science Foundation

向作者/读者索取更多资源

The ability to engineer an all-or-none cellular response to a given signaling ligand is important in applications ranging from biosensing to tissue engineering. However, synthetic gene network 'switches' have been limited in their applicability and tunability due to their reliance on specific components to function. Here, we present a strategy for reversible switch design that instead relies only on a robust, easily constructed network topology with two positive feedback loops and we apply the method to create highly ultrasensitive (n(H)>20), bistable cellular responses to a synthetic ligand/receptor complex. Independent modulation of the two feedback strengths enables rational tuning and some decoupling of steady-state (ultrasensitivity, signal amplitude, switching threshold, and bistability) and kinetic (rates of system activation and deactivation) response properties. Our integrated computational and synthetic biology approach elucidates design rules for building cellular switches with desired properties, which may be of utility in engineering signal-transduction pathways. Molecular Systems Biology 7: 480; published online 29 March 2011; doi:10.1038/msb.2011.13

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据