4.6 Article

Towards the prediction of protein interaction partners using physical docking

期刊

MOLECULAR SYSTEMS BIOLOGY
卷 7, 期 -, 页码 -

出版社

WILEY
DOI: 10.1038/msb.2011.3

关键词

interactome; protein docking; protein-protein interaction

资金

  1. British Council Research
  2. Marie Curie Action European Reintegration [MERG-CT-2007-200179]
  3. BioSapiens Network of Excellence [LSHG-CT-2003-503265]
  4. Spanish Ministry for Education and Science

向作者/读者索取更多资源

Deciphering the whole network of protein interactions for a given proteome ('interactome') is the goal of many experimental and computational efforts in Systems Biology. Separately the prediction of the structure of protein complexes by docking methods is a well-established scientific area. To date, docking programs have not been used to predict interaction partners. We provide a proof of principle for such an approach. Using a set of protein complexes representing known interactors in their unbound form, we show that a standard docking program can distinguish the true interactors from a background of 922 non-redundant potential interactors. We additionally show that true interactions can be distinguished from non-likely interacting proteins within the same structural family. Our approach may be put in the context of the proposed 'funnel-energy model'; the docking algorithm may not find the native complex, but it distinguishes binding partners because of the higher probability of favourable models compared with a collection of non-binders. The potential exists to develop this proof of principle into new approaches for predicting interaction partners and reconstructing biological networks. Molecular Systems Biology 7: 469; published online 15 February 2011; doi: 10.1038/msb.2011.3

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据