4.6 Article

Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli

期刊

MOLECULAR SYSTEMS BIOLOGY
卷 6, 期 -, 页码 -

出版社

WILEY
DOI: 10.1038/msb.2010.33

关键词

adaptation; ethanol tolerance; evolution; fitness profiling

资金

  1. NIGMS [P50 GM071508]
  2. NIH [1DP10D003787-01]

向作者/读者索取更多资源

Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e. g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape. Molecular Systems Biology 6: 378; published online 8 June 2010; doi:10.1038/msb.2010.33

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据