4.6 Article

Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics

期刊

MOLECULAR SYSTEMS BIOLOGY
卷 5, 期 -, 页码 -

出版社

WILEY
DOI: 10.1038/msb.2009.5

关键词

catastrophes; fission yeast; forces; kinesin-8; microtubules

资金

  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  2. HSFP [RPG11/2005]
  3. Marie Curie Fellowship

向作者/读者索取更多资源

Microtubules (MTs) are central to the organisation of the eukaryotic intracellular space and are involved in the control of cell morphology. For these purposes, MT polymerisation dynamics are tightly regulated. Using automated image analysis software, we investigate the spatial dependence of MT dynamics in interphase fission yeast cells with unprecedented statistical accuracy. We find that MT catastrophe frequencies (switches from polymerisation to depolymerisation) strongly depend on intracellular position. We provide evidence that compressive forces generated by MTs growing against the cell pole locally reduce MT growth velocities and enhance catastrophe frequencies. Furthermore, we find evidence for an MT length-dependent increase in the catastrophe frequency that is mediated by kinesin-8 proteins (Klp5/6). Given the intrinsic susceptibility of MT dynamics to compressive forces and the widespread importance of kinesin-8 proteins, we propose that similar spatial regulation of MT dynamics plays a role in other cell types as well. In addition, our systematic and quantitative data should provide valuable input for (mathematical) models of MT organisation in living cells. Molecular Systems Biology 17 March 2009; doi: 10.1038/msb.2009.5

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据