4.3 Article Proceedings Paper

Size effect on the stability of Cu-Ag nanoalloys

期刊

MOLECULAR SIMULATION
卷 35, 期 10-11, 页码 785-794

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/08927020902748673

关键词

molecular dynamics; nanoalloys; Gibbs energy of mixing

向作者/读者索取更多资源

Classical molecular dynamics (MD) simulations are used to study the phase stability of Cu-Ag nanoalloys based on the analysis of their thermodynamic mixing properties for both random and core-shell clusters as functions of nanoparticle size, temperature and composition. At 298 K, results for nanoalloys of increasing size at fixed composition suggest that alloying Cu and Ag is thermodynamically feasible only for a nanocluster size range, excluding very small (<1.8 nm) and large clusters (greater than or similar to 4 nm). In the size range of favourable alloy formation, Cu-Ag core-shell structures are more stable than random configurations, and the same conclusion holds for most of the composition range at fixed cluster size and 298 K. Varying temperature at fixed nanocluster size and fixed composition, core-shell structures are preferred up to the melting temperature of the nanoparticle. Also, we test an analytical model to predict the thermodynamic properties of mixing of nanoalloys using bulk enthalpies of mixing of the pure components and those of the corresponding bulk alloy. The enthalpies and Gibbs free energies of mixing obtained from the analytical model qualitatively agree with those obtained from MD simulations, especially when the nanoparticle size increases above 2.8 nm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据