4.3 Article

Rapamycin-Sensitive mTORC1 Signaling Is Involved in Physiological Primordial Follicle Activation in Mouse Ovary

期刊

MOLECULAR REPRODUCTION AND DEVELOPMENT
卷 80, 期 12, 页码 1018-1034

出版社

WILEY
DOI: 10.1002/mrd.22267

关键词

-

资金

  1. Chinese Ministry of Science and Technology 973 Projects [2010CB945100, 2011CB944104]
  2. National Science Foundation of China [31071231, 31271499]

向作者/读者索取更多资源

In mammals, resting female oocytes reside in primordial ovarian follicles. An individual primordial follicle may stay quiescent for a protracted period of time before initiating follicular growth, which is also termed activation. Female reproductive capacity is sustained by the gradual, streamlined activation of the entire population of primordial follicles, but this process also results in reproductive senescence in older animals. Based on the recent findings that genetically triggered, excessive mammalian target of rapamycin complex 1 (mTORC1) activation in mouse oocytes leads to accelerated primordial follicle activation, we examined the necessity of mTORC1 signaling in physiological primordial follicle activation. We found that induction of oocyte mTORC1 activity is associated with early follicular growth in neonatal mouse ovaries. Pharmacological inhibition of mTORC1 activity in vivo by rapamycin treatment leads to a marked, but partial, suppression of primordial follicle activation. The suppressive effect of rapamycin on primordial follicle activation was reproduced in cultured ovaries. While rapamycin did not apparently affect several plausible cellular targets in neonatal mouse ovaries, such as mTORC2, AKT, or cyclin-dependent kinase (CDK) inhibitor p27-KIP1, its inhibitory effect on Cyclin A2 gene expression implies that mTORC1 signaling in oocytes may engage a Cyclin A/CDK regulatory network that promotes primordial follicle activation. The current work strengthens the concept that mTORC1-dependent events in the oocytes of primordial follicles may represent potential targets for intervention in humans to slow the depletion of the ovarian reserve. Mol. Reprod. Dev. 80: 1018-1034, 2013. (c) 2013 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据