4.8 Article

MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption

期刊

MOLECULAR PSYCHIATRY
卷 20, 期 10, 页码 1240-1250

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/mp.2014.120

关键词

-

资金

  1. NIAAA [R01 AA016848, R37 AA016848, P50 AA017072]
  2. State of California for medical research on alcohol and substance abuse through UCSF

向作者/读者索取更多资源

MicroRNAs (miRNAs) induce messenger RNA (mRNA) degradation and repress mRNA translation. Several miRNAs control the expression of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC). The BDNF signaling pathway is activated by moderate intake of alcohol to prevent escalation to excessive drinking. Here, we present data to suggest that the transition from moderate to uncontrolled alcohol intake occurs, in part, upon a breakdown of this endogenous protective pathway via a miRNA-dependent mechanism. Specifically, a mouse paradigm that mimics binge alcohol drinking in humans produced a robust reduction in BDNF mRNA levels in the medial PFC (mPFC), which was associated with increased expression of several miRNAs including miR-30a-5p. We show that miR-30a-5p binds the 3' untranslated region of BDNF, and that overexpression of miR-30a-5p in the mPFC decreased BDNF expression. Importantly, overexpression of miR-30a-5p in the mPFC produced an escalation of alcohol intake and a preference over water. Conversely, inhibition of miR-30a-5p in the mPFC using a Locked Nucleic Acid sequence that targets miR-30a-5p restored BDNF levels and decreased excessive alcohol intake. Together, our results indicate that miR-30a-5p plays a key role in the transition from moderate to excessive alcohol intake.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据