4.5 Article

Nonhost Resistance of Rice to Rust Pathogens

期刊

MOLECULAR PLANT-MICROBE INTERACTIONS
卷 24, 期 10, 页码 1143-1155

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-04-11-0100

关键词

-

资金

  1. Bill and Melinda Gates Foundation as part of the Borlaug Global Rust Initiative

向作者/读者索取更多资源

Rice is atypical in that it is an agricultural cereal that is immune to fungal rust diseases. This report demonstrates that several cereal rust species (Puccinia graminis f. sp tritici, P triticina, P. striiformis, and P hordei) can infect rice and produce all the infection structures necessary for plant colonization, including specialized feeding cells (haustoria). Some rust infection sites are remarkably large and many plant cells are colonized, suggesting that nutrient uptake occurs to support this growth. Rice responds with an active, nonhost resistance (NHR) response that prevents fungal sporulation and that involves callose deposition, production of reactive oxygen species, and, occasionally, cell death. Genetic variation for the efficacy of NHR to wheat stem rust and wheat leaf rust was observed. Unlike cereal rusts, the rust pathogen (Melampsora lini) of the dicotyledenous plant flax (Linum usitatissimum) rarely successfully infects rice due to an apparent inability to recognize host-derived signals. Morphologically abnormal infection structures are produced and appressorial-like structures often don't coincide with stomata. These data suggest that basic compatibility is an important determinate of nonhost infection outcomes of rust diseases on cereals, with cereal rusts being more capable of infecting a cereal nonhost species compared with rust species that are adapted for dicot hosts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据