4.5 Article

Expression of an Oxalate Decarboxylase Impairs the Necrotic Effect Induced by Nep1-like Protein (NLP) of Moniliophthora perniciosa in Transgenic Tobacco

期刊

MOLECULAR PLANT-MICROBE INTERACTIONS
卷 24, 期 7, 页码 839-848

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-12-10-0286

关键词

-

资金

  1. Fundacao de Amparo a Pesquisa do Estado da Bahia (Salvador, Brazil)
  2. National Council for Scientific and Technological Development (Brasilia, Brazil)
  3. Coordination of Higher Education and Graduate Training (Brasilia, Brazil)

向作者/读者索取更多资源

Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO2 and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据