4.5 Article

Pseudomonas syringae pv. tomato DC3000 Type III Effector HopAA1-1 Functions Redundantly with Chlorosis-Promoting Factor PSPTO4723 to Produce Bacterial Speck Lesions in Host Tomato

期刊

MOLECULAR PLANT-MICROBE INTERACTIONS
卷 22, 期 11, 页码 1341-1355

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-22-11-1341

关键词

-

资金

  1. National Science Foundation [DBI-0605059]

向作者/读者索取更多资源

The ability of Pseudomonas syringae pv. tomato DC3000 to cause bacterial speck disease in tomato is dependent on the injection, via the type III secretion system, of approximately 28 Avr/Hop effector proteins. HopAA1-1 is encoded in the conserved effector locus (CEL) of the P syringae Hrp pathogenicity island. Transiently expressed HopAA1-1 acts inside Saccharomyces cerevisiae and plant cells to elicit cell death. hopAA1 homologs; were cloned and sequenced from the CEL of seven P syringae strains representing diverse pathovars. Analysis of the sequences revealed that HopAA1-1 carries a potential GTPase-activating protein (GAP) domain, GALRA, which is polymorphic (FEN instead of LRA) in HopAA1-2, a paralogous DC3000 effector. Deleting hopAA1-1 from DC3000 reduces the formation of necrotic speck lesions in dip-inoculated tomato leaves if effector-gene cluster IX or just PSPTO4723 within this region has been deleted. A HopAA1-1 mutant in which the putative catalytic arginine in the GAP-like domain has been replaced with alanine retains its ability to kill yeast and promote the formation of speck lesions by the Delta hopAA1-1 Delta IX mutant, but a HopAA1-1 mutant carrying the FEN polymorphism loses both of these abilities. Unexpectedly, PSPTO4723 does not appear to encode an effector and its deletion also reduces disease-associated chlorosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据