4.5 Article

Production of Succinoglycan Polymer in Sinorhizobium meliloti Is Affected by SMb21506 and Requires the N-terminal Domain of ExoP

期刊

MOLECULAR PLANT-MICROBE INTERACTIONS
卷 22, 期 12, 页码 1656-1668

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-22-12-1656

关键词

-

资金

  1. Bundesministerium fur Bildung und Forschung, Germany [0313805A]
  2. Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [PICT 32936/05]

向作者/读者索取更多资源

The protein tyrosine kinase ExoP, consisting of an N-terminal periplasmic and a C-terminal cytoplasmic domain, is important for polymerization of the exopolysaccharide succinoglycan (EPS I) in Sinorhizobium meliloti. We analyzed the contribution of the ExoP paralogs ExoP2 and SMb21506 to the production of the high molecular weight (HMW) form of EPS I. ExoP2, though not contributing to EPS I or lipopolysaccharide biosynthesis, showed increased expression at high osmolarity and was expressed in Medicago sativa nodules, suggesting an involvement in the synthesis of an as-yet-unidentified polysaccharide. Furthermore, a mutation in SMb21506 affected the production of HMW EPS I, particularly in the absence of the C-terminal ExoP domain. High salinity induced the production of HMW EPS I by the wild type and mutants whereas high osmolarity had the opposite effect. It was shown that ExoP localizes at the inner membrane of S. meliloti cells. Tyrosine phosphorylation of the C-terminal domain was strongly increased by amino acid substitutions in the polysaccharide co-polymerase motif (formerly proline-rich motif) located in the N-terminal domain, suggesting that this phosphorylation could be modulated by conformational changes of the N-terminal domain. Moreover, deletion of a coiled-coil motif present in the N-terminal domain abolished phosphorylation and EPS I production and, consequently, the ability to nodulate M. sativa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据