4.7 Article

Characterization and DNA-Binding Specificities of Ralstonia TAL-Like Effectors

期刊

MOLECULAR PLANT
卷 6, 期 4, 页码 1318-1330

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mp/sst006

关键词

Ralstonia solanacearum; genome engineering; TAL effectors; TALE activators and repressors; TALE nucleases (TALENs); targeted genome modifications

资金

  1. Center for Desert Agriculture
  2. National Institute of Health [R01GM070795]
  3. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM070795] Funding Source: NIH RePORTER

向作者/读者索取更多资源

We report the characterization of three Ralstonia TAL-like effectors, which mediate DNA binding and can be used as customizable architectures for DNA targeting. We determined DNA-binding specificities of novel repeat variable di-residues (RVDs) and devised a repeat assembly approach for engineering Ralstonia solanacearum TALE-like proteins (RTLs).Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据