4.7 Article

Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

期刊

MOLECULAR PLANT
卷 5, 期 2, 页码 366-375

出版社

CELL PRESS
DOI: 10.1093/mp/ssr108

关键词

alternative electron transport; metabolic regulation; molecular physiology; nitrogen metabolism; volatiles; tomato

资金

  1. US National Science Foundation [IOS-0923312]
  2. European Union [PL016214-2]
  3. European Research Area network [TomQML]

向作者/读者索取更多资源

The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine, isoleucine, and valine. These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids. Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized, their catabolism in plants is not yet completely understood. We previously characterized the branched chain amino acid transaminase gene family in tomato, revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes. Here, we examined possible functions of the enzymes during fruit development. We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3, evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3. We quantitatively tested, via precursor and isotope feeding experiments, the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles. Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration, but also reveal that keto acids, rather than amino acids, are the likely precursors for the branched chain flavor volatiles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据